# Transformer Losses – Types of Energy Losses in a Transformer

**Types of Energy Losses in a Transformer**

An ideal transformer have no energy losses i.e zero losses, and 100% efficient. but in real (In practical) transformers, energy is dissipated in the windings, core, and surrounding structures. Larger transformers are generally more efficient, and those of distribution transformer usually perform better than 98%.

Experimental transformers using superconducting ( Super conductor is one that in which zero losses occur) windings achieve efficiencies of 99.85% i.e zero transformer losses, but it would be available in coming years.

- You may also read: Transformers Fire Protection System – Causes, Types & Requirements

**Losses in a Practical Transformer**

The different losses in the transformer are as follows

Click image to enlarge

** Copper Losses (Winding Resistance)**

Current flowing through the windings causes resistive heating of the conductors. At higher frequencies, skin effect and proximity effect create additional winding resistance and losses.

**Total copper losses. = I _{1}^{2}_{.} R_{1}+ I_{2}^{2}R_{2} = I_{1}^{2}_{.} R _{01}+ I_{2}^{2}R _{02}**

- You may also read: How to Calculate/Find the Rating of Transformer in kVA (Single Phase and Three Phase)?

**Core or Iron Losses**

There are two types of core or iron losses in a Transformer.

**a) Hysteresis Losses**

Each time the magnetic field is reversed, a small amount of energy is lost due to hysteresis within the core. For a given core material, the transformer losses are proportional to the frequency, and is a function of the peak flux density to which it is subjected.

We can find Hysteresis losses by this formula.

**W**η

_{h}=**B**

^{1.6}_{max}f.v watt**b) Eddy Current Losses**

Ferromagnetic materials are also good conductors, and a core made from such a material also constitutes a single short-circuited turn throughout its entire length. Eddy currents therefore circulate within the core in a plane normal to the flux, and are responsible for resistive heating of the core material.

The eddy current loss is a complex function of the square of supply frequency and inverse square of the material thickness. Eddy current losses can be reduced by making the core of a stack of plates electrically insulated from each other, rather than a solid block; all transformers operating at low frequencies using laminated or similar cores.

We can find Eddy currents losses by this formula.

**W**

_{e}= PB^{2}_{max}.f^{2}t^{2 }Watt- You may also read: EMF Equation of Transformer

**Stray losses (leakage Flux)**

Leakage inductance is by itself largely lossless, since energy supplied to its magnetic fields is returned to the supply with the next half-cycle. However, any leakage flux that intercepts nearby conductive materials such as the transformer’s support structure will give rise to eddy currents and be converted to heat. There are also radiative losses due to the oscillating magnetic field, but these are usually small and negligible.

**Dielectric Loss**

In the solid insulation or transformer oil i.e. insulation material of the transformer, dielectric loss occurs when the solid insulation get damaged or the oil gets deteriorated or its quality decreases over the time. Hence, the overall efficiency of transformer may be affected due to this loss.

**Other Losses**

**Magnetostriction Losses**

Magnetic flux in a ferromagnetic material, such as the core, causes it to physically expand and contract slightly with each cycle of the magnetic field, an effect known as magnetostriction. This produces the buzzing sound commonly associated with transformers, and can cause losses due to frictional heating.

You may also read: Transformer Phasing: The Dot Notation and Dot Convention

**Mechanical losses**

In addition to magnetostriction, the alternating magnetic field causes fluctuating forces between the primary and secondary windings. These incite vibrations within nearby metalwork, adding to the buzzing noise, and consuming a small amount of power.

You may also read:

- Transformers MCQs With Explanatory Answers
- A (50/60 Hz) Transformer. Which one will give more Output? (When operates on 50 or 60 Hz frequency)
- Can we replace a 110/220 Turns Transformer with 10/20 Turns?
- What is the difference between Power Transformers and Distribution Transformers?
- Uses and Application of Transformer

awesome explaination

can u calculate losses in 750 KVA transformer. we using 20 hrs. every day load on average 450 amps.

input volt is 33000 high tension line voltage /out put is 415 volt 50 HZ. ALSO calculate being make unit consumed during losses when no load on SUNDAY /holidays. POWER FACTOR IS ALWAYS .99/UNITY.

KINDLY we request can u send formula how do i calculate losses ?.

Dear Sir,

pl. provide me the list of No load loss and full load loss of all capacities of distribution as well as power transformers of all possible voltage ration. I shall be really grateful for the same.

Dear Sir,

can anybody tell about the % transformation losses in power transformers i.e. 66/11 KV of 15 and 20 MVA ratings and other voltage ration also. .